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This paper demonstrates that the scattering cross section per unit length of randomly oriented linear chains of
optically soft spheres asymptotically converges toward those of randomly oriented and infinitely long cylinders
with volume-equivalent diameter as the number of spheres increases. The critical number of spheres necessary
to approximate the linear chains of spheres as infinitely long cylinders decreased rapidly as the size parameter of
an individual sphere increased from 0.01 to 10. On the other hand, their absorption cross section per unit
length was identical to that of an infinitely long volume-equivalent cylinder for any number of spheres. However,
this approximation does not apply to the angle-dependent normalized Stokes scattering matrix element
ratios. © 2013 Optical Society of America
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1. INTRODUCTION
Light absorption and scattering by nonspherical particles or
by clusters of spheres have been the subject of great interest
in the radiation transfer community and have found various
applications in science and engineering ranging from astro-
physics and atmospheric science to combustion systems
and aerosol-based processes [1–4]. Numerical tools have been
developed to predict light absorption and scattering by non-
spherical scatterers based on (i) the T-matrix methods [5–10],
(ii) the discrete-dipole approximation (DDA) [11–13], or
(iii) the finite-difference time-domain method [3,14,15], to
name the most widely used. Similarly, light absorption and
scattering by a cluster or aggregate of spheres have been pre-
dicted by (i) the superposition T-matrix method [16–23],
(ii) the DDA [24], and (iii) the volume-integral equation com-
bined with the method of moments [25–27]. Most of the stud-
ies on sphere clusters focused on radiation scattering and
absorption by soot particles.

Depending on the size and morphology of the scatterers
and on the wavelength, calculations can be time consuming
and require large computing resources, regardless of the
method used. Moreover, actual particles may not have well-
defined shapes. Thus, for practical purposes, it is important
to try to find simplified models to approximate scatterers with
complex geometries as equivalent particles with simpler
shapes such as spheres or cylinders [15,28]. For example,
Kahnert et al. [28] showed that the extinction and scattering
cross sections, the single scattering albedo, and the asymme-
try factor of an ensemble of randomly oriented polyhedral
prisms with power-law size distribution and size comparable
to the wavelength of light can be approximated as an ensem-
ble of spheres, spheroids, or finite-length cylinders with
the same volume, complex index of refraction, and size

distribution. Note that treating the prisms as volume-equiva-
lent cylinders or spheroids gave slightly better results than
treating them as spheres. However, any of these simplifica-
tions failed to predict the linear depolarization ratio. Similarly,
Yang et al. [15] investigated the single scattering properties of
various Platonic particles and compared their radiation char-
acteristics with those of equivalent spheres having the same
(i) geometric dimension, (ii) surface area, (iii) volume, or
(iv) volume-to-surface area ratio. The authors concluded that
all these approximations led to significant errors in the extinc-
tion efficiency factor, single scattering, albedo, and/or scatter-
ing matrix elements. The volume-equivalent spheres gave the
smallest errors of all equivalent spheres considered. In addi-
tion, approximating the Platonic particles by their volume-to-
surface area ratio equivalent sphere led to the largest errors.

The goal of the present study is to theoretically identify sim-
plified models for predicting light absorption and scattering by
long and randomly oriented linear chains of spheres. This
question finds its motivation in predicting light transfer in pho-
tobioreactors cultivating photosynthetic filamentous cyano-
bacteria for wastewater treatment, sustainable biofuel, and/
or fertilizer productions [29]. It also applies to the field of
ocean optics for remote sensing applications and for studying
carbon dioxide and nitrogen cycles [4], for example.

2. BACKGROUND
A. Filamentous Cyanobacteria
Cyanobacteria, also known as blue-green algae, are photoau-
totrophic prokaryotes that are capable of conducting oxy-
genic photosynthesis [30]. They use solar radiation in the
photosynthetically active radiation (PAR) region, defined by
wavelength ranging from 400 to 700 nm, as their energy
source. They can be found in nearly every terrestrial and
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aquatic habitat on Earth and are responsible for the presence
of oxygen in the atmosphere [31]. Cyanobacteria can be uni-
cellular and filamentous, and their size can range from 0.5 to
40 μm in diameter depending on the strain [30]. Some filamen-
tous forms have evolved to contain the nitrogenase enzyme in
specialized nitrogen-fixing cells called heterocysts. Several
species can also produce hydrogen H2 through direct and indi-
rect biophotolysis and have been considered for photobiologi-
cal hydrogen production [32].

Figure 1 shows micrographs of different species of filamen-
tous cyanobacteria and illustrates, in particular, (a) nearly
spherical vegetative cells of the nitrogen-fixing cyanobacteria
Nostoc punctiforme 5–6 μm in diameter, (b) an ensemble of
Nostoc punctiforme showing filaments with both vegetative
(5–6 μm in diameter) and heterocyst cells (6–10 μm in diam-
eter), (c) an individual filament of Anaebena sp. with spheri-
cal to oblong vegetative cells 4–14 μm in diameter, and
(d) aggregating filaments of Anabaena iyengari. Other
filamentous cyanobacteria with similar morphology include
Anabaena sphaerica, Anabaena cylindrica, Anabaena

variabilis, and Anabaena azollae, to name a few.

B. Scattering Matrix
The radiation incident on a particle of arbitrary shape at lo-
cation r can be represented by the incident Stokes vector
Iinc�r; ŝi� � �I inc; Qinc; U inc; V inc�T , where I, Q, U , and V

are the so-called Stokes parameters [33]. The Stokes vector
of the scattered radiation denoted by Isca�r; ŝ� �
�Isca; Qsca; Usca; V sca�T is related to the incident Stokes vector
by the Mueller matrix [Z�Θ�] according to [18]

Isca�r; ŝ� �
1

r2
�Z�Θ��Iinc�r; ŝi�; (1)

where r is the norm of the location vector r, and Θ is the so-
called scattering angle ranging from 0° to 180° and defined as
the angle between the incident and scattered directions

denoted by ŝi and ŝ, respectively. For a cluster of particles
with a plane of symmetry, it is convenient to use the normal-
ized (or Stokes) scattering matrix expressed as [18]

�F�Θ�� � 4π
Csca

�Z�Θ��; (2)

where Csca is the particle’s scattering cross section. Then, the
normalized Stokes scattering matrix has a 4 × 4 structure with
six independent elements and can be written as [2]

�F�Θ�� �

2
6664
F11�Θ� F12�Θ� 0 0
F12�Θ� F22�Θ� 0 0

0 0 F33�Θ� F34�Θ�
0 0 −F34�Θ� F44�Θ�

3
7775: (3)

The normalized Stokes scattering matrix element F11�Θ� is the
scattering phase function normalized according to

1
4π

Z
4π
F11�Θ�dΩ � 1; (4)

where Ω is the solid angle around the scattering angle Θ. In
addition, the first moment of the scattering phase function is
the so-called asymmetry factor defined as [29]

g � 1
4π

Z
4π
F11�Θ� cos ΘdΩ: (5)

It describes the shape of the scattering phase function and is
equal to 0.0 for isotropic scattering and −1 and 1 for purely
backward and forward scattering, respectively.

The ratio −F12�Θ�∕F11�Θ� represents the degree of linear
polarization of the scattered radiation for unpolarized incident
radiation [34]. The ratio F22�Θ�∕F11�Θ� captures the non-
sphericity of the particles and is equal to unity for a single
sphere [34]. Other indicators of the sphericity of the scatterer
are the linear and circular polarization ratios, respectively,
defined as [18]

δL � �F11�180°� − F22�180°��
�F11�180°� � F22�180°��

�6�

and

δC � �F11�180°� � F44�180°��
�F11�180°� − F44�180°��

: (7)

For a single sphere, δC;s � δL;s � 0 [18], while for randomly
oriented rotationally symmetric particles, δC ≥ 2δL [6]. For
a randomly oriented and infinitely long cylinder, they both
vanish, i.e., δC;c � δL;c � 0. The term F34 represents howmuch
incident radiation obliquely polarized at 45° gets transformed
into circularly polarized radiation [34]. Hovenier and Mackow-
ski [35] derived relations between scattering matrix elements
at forward and backward scattering directions (Θ � 0 and
180°) for randomly oriented single particle and a cluster of
particles with one plane of symmetry and for rotationally
symmetric particles. They showed that, for such particles
or clusters, Δ�0°� � F11�0°� − F22�0°� − F33�0°� � F44�0°� was
equal to zero and that F11�180°� − 2F22�180°� � F44�180°�.

(a) (b)

(c) (d)Anabaena sp. 

Anabaena iyengari 

Nostoc pondiforme Nostoc pondiforme

Fig. 1. Micrographs of filamentous cyanobacteria: (a), (b) Nostoc
pondiforme, (c) Anabaena sp., and (d) Anabaena iyengari. Repro-
duced with permission from (a) Isao Inouye (University of Tsukuba),
Mark Schneegurt (Wichita State University), and Cyanosite
(www‑cyanosite.bio.purdue.edu); (b) Prof. Ann Magnuson (Uppsala
University); and (c), (d) Prof. Yuuji Tsukii (Hosei University, http://
protist.i.hosei.ac.jp/).
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These relationships were validated using the T-matrix
method. Finally, for a spherical scatterer F22�Θ� � F11�Θ�
and F33�Θ� � F44�Θ� [33].

C. T-matrix Method for Linear Chain of Spheres
The superposition T-matrix method has been developed for
arbitrary clusters of multiple spheres as described in detail
in [17]. This approach is based on the superposition principles
whereby the scattered field from the entire cluster of spheres
is estimated by summing those from each of the spheres [17].
The scattered fields in sphere-centered coordinates are also
transformed into cluster-centered coordinates [17]. The ab-
sorption and scattering cross sections and efficiency factors
for randomly oriented clusters of identical spheres can be ob-
tained by using the matrix relationships for the scattered and
incident field and integrating the incident field over all propa-
gation directions and polarizations [22]. The corresponding
normalized Stokes scattering matrix can be obtained analyti-
cally from operations on the T-matrix [22].

Figure 2(a) illustrates absorption and scattering by a linear
chain of monodisperse spheres of complex index of refraction
m2 � n2 � ik2 in a nonabsorbing medium of refraction index
n1. Mackowski and Mishchenko [22] defined the orientation-
averaged absorption and scattering cross sections of a cluster
of Ns monodisperse spheres, denoted by hCabs;si�m; χs; Ns�
and hCsca;si�m; χs; Ns�, respectively, and expressed in m2 as

hCabs∕sca;si �
πd2s;eq;V

4
hQabs∕sca;si; (8)

where ds;eq;V is the equivalent diameter of a single sphere hav-
ing volume identical to that of the cluster of Ns monodisperse
spheres of diameter ds, i.e., ds;eq;V � dsN

1∕3
s . Here,m � m2∕n1

is the relative complex index of refraction of the spheres with
respect to that of the nonabsorbing surrounding medium,
while χs � πds∕λ is the size parameter of a single sphere of
diameter ds. The notation hXi refers to the orientationally
averaged property. The absorption and scattering efficiency
factors denoted by hQabs;si�m; χs; Ns� and hQsca;si�m; χs; Ns�
were computed by the T-matrix method.

Numerous studies have been concerned with light absorp-
tion and scattering by fractal aggregates of small spherical

particles simulating soot particles forming in combustion sys-
tems [21,25–27,36]. Mishchenko and Mackowski [16] demon-
strated the use of the T-matrix method to determine the
elements of the normalized Stokes scattering matrix for ran-
domly oriented and connected bispheres. The authors ex-
tended this formulation to determine the elements of the
scattering matrix of randomly oriented arbitrary clusters of
spheres [20]. In particular, they considered linear chains of
spheres consisting of 1 to 5 spheres with size parameter χs �
5 and relative complex index of refraction m � 1.5� i0.005
[20]. They concluded that increasing the number of spheres
(i) enhanced scattering in the forward direction (Θ � 0°)
and (ii) damped out the oscillations in the normalized Stokes
scattering matrix elements as a function of scattering angle Θ.
In addition, the elements F11, F12, F22, F33, F34, and F44 be-
came nearly independent of the number of spheres for chains
consisting of two spheres or more. To illustrate their sym-
metry relations for forward and backward scattering by ran-
domly oriented clusters of spheres with a plane of symmetry,
Hovenier and Mackowski [35] considered a linear chain of
spheres consisting of four spheres with size parameter
χs � 3 and relative complex index of refraction m � 1.311�
i3.11 × 10−9 and showed that Δ�0°� � 0 [20].

D. Absorption and Scattering by Infinitely Long
Cylinders
Figure 2(b) illustrates absorption and scattering by an infi-
nitely long cylinder of diameter dc with complex index of
refractionm2 � n2 � ik2 in a nonabsorbing medium of refrac-
tion index n1. Collimated radiation is incident onto the cylin-
der at an angle ϕ with respect to the normal of the cylinder
axis [37]. The scattered radiation propagates along the conical
surface defined by the apex angle of π∕2 − ϕ. The direction of
the scattered radiation is defined azimuthally relative to the
incident radiation by the angle θ. The theory predicting the
absorption and scattering cross sections of infinitely long cyl-
inders is well established [1,2,37–41]. First, cylinders can be
treated as infinitely long provided that their length Lc is much
larger than their diameter dc, i.e., Lc ≫ dc [2]. The extinction
and scattering cross sections per unit length of an infinitely
long cylinder of diameter dc with relative complex index of
refraction m � m2∕n1 for a given incident direction ϕ are
denoted by C0

ext;c and C0
sca;c and expressed in m2∕m. They

are defined as [42]

C0
ext∕sca;c�m; χc;ϕ� � 2dcQext∕sca;c�m; χc;ϕ�; (9)

where χc � πdc∕λ is the cylinder size parameter, while
Qext;c�m; χc;ϕ� and Qsca;c�m; χc;ϕ� are the extinction and scat-
tering efficiency factors, respectively. The extinction and scat-
tering cross sections C0

ext;c�m; χc;ϕ� and C0
sca;c�m; χc;ϕ� can be

expressed in terms of the coefficients an and bn given in terms
of Bessel and Hankel functions [1,42]. In addition, the absorp-
tion cross sections per unit length are defined as
hC0

abs;ci�m; χc� � hC0
ext;ci�m; χc� − hC0

sca;ci�m; χc�. The absorp-
tion and scattering cross sections per unit length of an infi-
nitely long and randomly oriented cylinder are estimated by
averaging the angular cross sections over the observation
hemisphere according to [37]

θ

φ

Incident 
radiation

Scattered 
radiation

Chain of spheres
(m2=n2+ik2)

ds

L
s=

N
sd

s

Nonabsorbing
medium (n1)

(a)

Θ

θ

φ

Incident 
radiation

Scattered 
radiation

Cylinder
(m2=n2+ik2)

Nonabsorbing
medium (n1)

Θ

dc

L
c

(b)

Fig. 2. Schematic and coordinate system associated with absorption
and scattering of incident radiation at incident angle of ϕ by (a) linear
chain of Ns spheres of diameter ds with complex index of refraction
m2 � n2 � ik2 in a nonabsorbing medium of m1 � n1, and (b) infi-
nitely long cylinder of diameter dc [37].
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hC0
abs∕sca;ci�m; χc� �

Z
π∕2

0
C0

abs∕sca;c�m; χc;ϕ� cos ϕdϕ: (10)

To the best of our knowledge, only a few studies have pre-
sented the normalized Stokes scattering matrix elements of
linear chains of spheres [20,35,43]. In addition, the number
of spheres considered did not exceed 5, and a single relatively
large size parameter was investigated. By contrast, the present
study investigates the effect of the sphere size parameter
(ranging from 0.01 to 10) and the number of spheres (between
1 and 4000) on the absorption and scattering cross sections
per unit length, the scattering phase function, and the normal-
ized Stokes scattering matrix elements of linear chains of
spheres. It aims to answer the following questions: (1) can
one approximate long and randomly oriented linear chains
of spheres as randomly oriented infinitely long cylinders?
(2) If so, how long should the chains be or how many spheres
should they consist of? And (3) what should the diameter of
the equivalent cylinder be? Note that special emphasis was
placed on optically soft particles characterized by a small
mismatch between their complex index of refraction and
the surrounding medium, i.e., jm − 1j ≪ 1.

3. ANALYSIS
A. Problem Statement
Radiation characteristics of photosynthetic microorganisms
depend largely on their size, shape, pigment composition, in-
ternal structure, and effective optical properties [44]. They are
essential in predicting light transfer in photobioreactors and
the overall performance of the systems [29,45,46]. Microalgae
and cyanobacteria feature small index mismatch with their
surrounding medium and can be considered as optically soft
[4]. In addition, the circularity and aspect ratio of individual
cells in cyanobacteria filaments are not exactly unity as sug-
gested by the micrographs shown in Fig. 1. However, the aver-
age aspect ratio of vegetative or heterocyst cells is typically
less than 1.33. Our previous study showed that the radiation
characteristics of randomly oriented spheroidal microalgae
with aspect ratio less than 1.33 computed with the T-matrix
method were nearly identical to those of surface-equivalent
spheres with identical complex index of refraction computed
by Lorenz–Mie theory [47]. These observations suggest that,
as a first-order approximation, filamentous cyanobacteria
can be approximated as linear chains of connected, spherical,
and homogeneous cells. In a well-mixed suspension, they
could further be treated as randomly oriented.

Transport of unpolarized light through well-mixed suspen-
sions of a linear chain of spheres of known concentration is
governed by the radiation transfer equation, requiring knowl-
edge of their absorption and scattering cross sections hCabs;λi
and hCsca;λi, and of the scattering phase function F11�Θ�.
Moreover, investigating other elements of the scattering
matrix could prove useful for remote sensing of these suspen-
sions. Then, their radiation characteristics could be numeri-
cally predicted by the superposition T-matrix method [22].
However, these calculations can be very time consuming, par-
ticularly given the length and size of these microorganisms
and the wavelength of light in the PAR region. Therefore, from
a radiation standpoint, one may wonder if these microorgan-
isms could be modeled as randomly oriented and infinitely
long cylinders [2,37,40].

B. Methodology
The computer code for the superposition T-matrix method
used to predict absorption and scattering cross sections
and normalized Stokes scattering matrix elements of ran-
domly oriented linear chains of monodisperse spheres was ob-
tained from [22]. It was successfully validated by comparing
predictions of the absorption and scattering efficiency factors
and the normalized Stokes scattering matrix elements pre-
dicted by our code with those (i) for randomly oriented bi-
spheres with m � 1.5� i0.005 and χs � 10 reported by
Mishchenko and Mackowski [19] and (ii) for randomly ori-
ented linear chains of spheres composed of 1 to 5 touching
spheres with m � 1.5� i0.005 and χs � 5 reported by
Mackowski and Mishchenko [20]. Similarly, the code for pre-
dicting the absorption and scattering cross sections and the
normalized Stokes scattering matrix of randomly oriented
and infinitely long cylinders used in this study was obtained
from [41]. It was successfully validated against the results re-
ported by Lee [37,48] for the extinction efficiency factor and
the scattering phase function of randomly oriented and infi-
nitely long cylinders in vacuum.

Yang et al. [15] warned that it could be “misleading” to com-
pare the efficiency factors of particles with complex shape
with those of their equivalent spheres rather than directly
comparing their cross sections. Indeed, radiation transfer cal-
culations use cross sections and the particle number density
NT (in #∕m3) to estimate the absorption and scattering coef-
ficients as κλ � Cabs;λNT and σs;λ � Csca;λNT . These coeffi-
cients are used to compute the radiation intensity solution
of the radiative transfer equation [42]. Thus, the present study
compares the absorption and scattering cross sections of a
randomly oriented linear chain of spheres and infinitely long
cylinders. In order to directly compare the radiation cross sec-
tions of a randomly oriented linear chain composed of Ns

spheres of diameter ds with those of an infinitely long cylin-
der, their orientationally averaged scattering and absorption
cross sections were defined per unit length of linear chain
of spheres as

hC0
abs∕sca;si �

hCabs∕sca;si
Nsds

: (11)

Finally, in the present study, the complex index of refrac-
tion of the spheres was taken as m2 � 1.355� i0.004, while
that of the nonabsorbing surrounding medium was
n1 � 1.333. These optical properties were representative of
cyanobacteria in suspension in their nutrient medium and
exposed to visible light [47].

4. RESULTS AND DISCUSSION
A. Absorption and Scattering Cross Sections
Figure 3 shows the absorption cross section per unit length of
a randomly oriented linear chain of monodisperse spheres as
a function of the number of spheres Ns for size parameter
χs � 0.01, 0.1, 1, and 10. The results were compared with
those for an infinitely long cylinder with identical relative
complex index of refraction. Two equivalent diameters were
considered, assuming (1) the cylinder had the same surface
area as the chain of spheres resulting in the surface-equivalent
diameter dc;eq;S � ds or (2) the cylinder had the same volume
as the chain of spheres resulting in volume-equivalent
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diameter dc;eq;V �
��������
2∕3

p
ds. Figure 3 indicates that the absorp-

tion cross sections per unit length of a randomly oriented lin-
ear chain of spheres were equal to those of randomly oriented
and infinitely long cylinders with volume-equivalent diameter
regardless of the number of spheres, i.e., hC0

abs;si�m; χs; Ns� �
hC0

abs;ci�m; χc;eq;V �. However, they were much smaller than
those of a randomly oriented and infinitely long cylinder with
surface-equivalent diameter dc;eq;S .

Similarly, Fig. 4 shows the scattering cross section per unit
length of a randomly oriented linear chain of spheres as a
function of the number of spheres Ns. Four size parameters
were considered, namely χs � 0.01, 0.1, 1, and 10. These re-
sults were compared with the scattering cross section per unit
length of a randomly oriented and infinitely long cylinder with
the same relative complex index of refraction m. Figure 4 in-
dicates that the scattering cross section of linear chains of
spheres increased with an increasing number of spheres for
all size parameters considered. In addition, as the number
of spheres increased, the scattering cross section asymptoti-
cally converged toward that of randomly oriented and infi-
nitely long volume-equivalent cylinders with diameter dc;eq;V .

Let us define the critical number of spheres Ns;cr necessary
to achieve an error less than 5% between the scattering cross
sections of a linear chain of spheres and those of infinitely
long cylinders. Figure 5 plots the critical number of spheres
Ns;cr as a function of size parameter χs. It is evident that Ns;cr

decreased with increasing size parameter according to the
power law

Ns;cr � Kχps ; (12)

where K and p are empirical constants found, by least square
fitting, to be K � 136 and p � −0.7 with a coefficient of
determination R2 � 0.997 estimated based on its most general

definition R2 � 1 − SSres∕SStot, where SSres and SStot are
the residual sum of squares and the total sum of squares,
respectively [49].

Finally, the cross sections and scattering matrix elements
of linear chains of spheres were performed on a UCLA
Hoffman 2 cluster with 20 parallel CPUs. It took about 5 h
to simulate a linear chain of spheres with Ncr � 190 and
χs � 1, while it took 30 s for the volume-equivalent cylinder.
Similar speedup was observed for linear chains of spheres
with other size parameters.

B. Scattering Phase Function
Figure 6 shows the scattering phase function F11�Θ� as a func-
tion of scattering angle Θ for randomly oriented linear chains
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of spheres consisting of Ns;cr spheres with size parameter χs
ranging between 0.01 and 10. It also shows the phase function
for the corresponding randomly oriented and infinitely long
volume-equivalent cylinders. The value of F11�0°� for linear
chains of spheres increased from 31.54 to 721.8 as the size
parameter χs increased from 0.01 to 10. In other words, a lin-
ear chain of spheres scatters more and more strongly in the
forward direction as the size parameter associated with indi-
vidual constitutive spheres χs increases. Moreover, the scat-
tering phase functions of the randomly oriented linear
chain of spheres and infinitely long cylinders were very sim-
ilar except in the forward and backward directions, Θ � 0°
and 180°. In addition, the scattering phase function shows
strong oscillations for scattering angles larger than 20° for
χs � 10. This indicates that resonance effects become increas-
ingly important for large sphere size parameters. Table 1 com-
pares F11�0°� and the asymmetry factors gs and gc;eq;V of a long
(Ns � Ns;cr) randomly oriented linear chain of spheres with
those of their volume-equivalent cylinder. It indicates that
the values of F11�0°� for linear chains of spheres and infinitely
long cylinders were significantly different. However, gs and
gc;eq;V differed by less than 1% and increased from 0.383 to
0.980 as χs increased from 0.01 to 10.

Overall, the above results establish that the radiation char-
acteristics for unpolarized radiation of long (i.e., Ns ≥ Ns;cr)
randomly oriented linear chains of monodisperse spheres
can be approximated as those of randomly oriented and infi-
nitely long volume-equivalent cylinders. Then, their radiation
characteristics can be computed using simple algorithm [1]
instead of the superposition T-matrix method [22]. This sim-
plifies and reduces significantly the computational effort.

For the practical problem of interest, filamentous cyano-
bacteria typically have size parameters larger than 10 and con-
sist of more than 15 cells. Thus, the present study established
that, as a first-order approximation, filamentous cyanobacte-
ria in photobioreactors can be approximated as randomly
oriented and infinitely long cylinders for the purpose of pre-
dicting their radiation characteristics for unpolarized incident
radiation.

C. Scattering Matrix Elements
In cases concerned with polarized radiation, for the purpose
of remote sensing, for example, detailed analysis of the
normalized Stokes scattering matrix element is necessary.
Figure 7 shows the ratios of the elements of the normalized
Stokes scattering matrix (a) −F12�Θ�∕F11�Θ�, (b) F22�Θ�∕
F11�Θ�, (c) F33�Θ�∕F11�Θ�, (d) F44�Θ�∕F11�Θ�, and
(e) F34�Θ�∕F11�Θ� as a function of scattering angle Θ for a
long (Ns � Ns;cr) randomly oriented linear chain of spheres
of diameter ds with size parameter χs equal to 0.01, 0.1, 1,
and 10. It also shows these ratios for the corresponding
randomly oriented and infinitely long cylinders with
volume-equivalent diameter dc;eq;V �

��������
2∕3

p
ds.

First, we observed that Δ�0°� was equal to zero and that
F44�180°� � F11�180°� − 2F22�180°� for both long linear chains
of spheres and infinitely long cylinders. We also verified that
the results satisfied the symmetry relations for the scattering
matrix elements of clusters of particles with one plane of sym-
metry expressed as [35] F12�0°� � F12�180°� � F34�0°� �
F34�180°� � 0, F22�0°� � F33�0�, F22�180°� � −F33�180°�,
F11�180°�−F22�180°� � F44�180°�−F33�180°�, and F11�180°�−
F22�180°� � F44�180°� − F33�180°�.

Second, it is worth noting that the ratios of the elements of
the normalized Stokes scattering matrix for long linear chains
of monodisperse spheres were nearly identical to one another
for size parameter χs between 0.01 and 1. The behavior of the
matrix element ratios was very similar to the results reported
(i) by Liu and Mishchenko [36] for orientation-averaged scat-
tering matrix elements of fractal-like soot aggregates consist-
ing of more than 200 monodisperse spherical monomers of
diameter ds � 20 nm with m � 1.75� 0.435 at λ � 628 nm
(χs � 0.1), and (ii) by Bunkin et al. [50] for ensemble-averaged
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Table 1. Comparison between Selected Scattering Properties of Randomly Oriented Long Linear Chains of

Spheres with Size Parameter χ s Equal to 0.01, 0.1, 1.0, and 10.0 and their Randomly Oriented and Infinitely Long

Volume-Equivalent Cylindersa

Linear Chain of Spheres Volume-Equivalent Cylinder

χs Ns hC0
sca;si �m� F11�0°� gs δL;s δC;s hC0

sca;si �m� F11�0°� gc;eq;V δL;c δC;c

0.01 4000 8.72 × 10−12 37.3 0.38 0.0 0.0 9.098 × 10−12 747.4 0.39 0.0 0.0
0.1 1300 8.87 × 10−8 90.2 0.39 5.0 × 10−5 8.0 × 10−17 9.08 × 10−8 748.7 0.39 0.0 0.0
1.0 190 7.26 × 10−4 98.8 0.54 5.0 × 10−5 7.6 × 10−17 7.64 × 10−4 878.3 0.49 0.0 0.0
10.0 15 1.085 721.8 0.98 0.09 0.2 1.086 5723.3 0.98 0.0 0.0
aTheir relative complex index of refraction was m � 1.0165� i0.003.
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scattering matrix elements of stochastic ensembles of nonab-
sorbing nanosphere clusters made of 500� 70 polydisperse
monomers with mean diameter of 100 nm and m � 0.75 at
λ � 532 nm (χs ∼ 0.6).

Moreover, for a given value of χs, increasing the numbers of
spheres in the linear chain significantly affected the scattering
phase function F11�Θ� but not the ratios F12�Θ�∕F11�Θ�,
F22�Θ�∕F11�Θ�, F33�Θ�∕F11�Θ�, F44�Θ�∕F11�Θ�, and
F34�Θ�∕F11�Θ�. This was also observed for linear chains of
spheres with large size parameter (χs � 5) [20] and for
fractal-like soot aggregates [36].

The degree of linear polarization of linear chains of spheres
for unpolarized incident radiation −F12�Θ�∕F11�Θ� reached a
maximum of 100% at scattering angle Θ around 90°. It also
vanished in the forward scattering (Θ � 0°) and backscatter-
ing angles (Θ � 180°), as expected for a cluster of spheres
with a plane of symmetry [20,51]. Similar results were ob-
tained for a fractal cluster of soot particles and were attrib-
uted to the fact that scattering was dominated by individual
Rayleigh-sized spheres [24,36]. In addition, the light scattered
by multiple spheres was more linearly polarized than that by
the volume-equivalent cylinder. In fact, −F12�Θ�∕F11�Θ�
reached a maximum of about 30%–35% around 80° for ran-
domly oriented and infinitely long volume-equivalent cylin-
ders and was nearly independent of χs except for χs � 10.
In this latter case, −F12�Θ�∕F11�Θ� featured resonances at
the same scattering angles as those observed in F11�Θ�.

The ratio F22�Θ�∕F11�Θ� was equal to 100% at all scattering
angles for randomly oriented linear chains of spheres for any
size parameters. These results were identical to those
obtained with a single sphere and further confirm the above
observations that the single spheres dominated scattering.
However, the linear and circular polarization ratios δL;s and
δC;s were nearly 0.0 for χs ≤ 1 and increased for larger size
parameters χs. Unlike single spheres, δL;s and δC;s were differ-
ent for all size parameters, as summarized in Table 1. For
infinitely long cylinders, F22�Θ�∕F11�Θ� was 100% for forward

(Θ � 0°) and backward (Θ � 180°) scattering angles but de-
creased between these two angles reaching a minimum of
about 20% for a scattering angle around 50°. As previously
mentioned, δC;c � δC;c � 0 for randomly oriented and infi-
nitely long cylinders of any size parameter.

For both randomly oriented cylinders and linear chains of
spheres, the ratios F33�Θ�∕F11�Θ� and F44�Θ�∕F11�Θ� de-
creased from 100% to −100% as the scattering angle increased
from 0° to 180°. The ratio F33�Θ�∕F11�Θ� decreased faster for
a cylinder than for a linear chain of spheres. However, the ra-
tio F44�Θ�∕F11�Θ� was nearly identical for randomly oriented
linear chains of aligned spheres and infinitely long cylinders
with volume-equivalent diameter for all size parameters χs
considered. The ratios F33�Θ�∕F11�Θ� and F44�Θ�∕F11�Θ�
for long linear chains of spheres were equal to each other
and were identical to those of a single sphere. This was unlike
what was observed in the validation cases for bispheres [19]
and for linear chains of 1–5 spheres [20] with size parameters
of 10 and 5, respectively. Indeed, in these cases, the ratio
F22�Θ�∕F11�Θ� departed from unity and the ratio
F33�Θ�∕F11�Θ� was different from F44�Θ�∕F11�Θ�, unlike
those corresponding to a single sphere.

Finally, the normalized Stokes scattering matrix element ra-
tio F34�Θ�∕F11�Θ� was equal to 0.0 for all scattering angles for
χs � 0.01, 0.1, and 1 for both randomly oriented linear chains
of spheres and infinitely long cylinders. However, for χs � 10,
F34�Θ�∕F11�Θ� featured several peaks with values between
−60% and 30% at scattering angles corresponding to the res-
onances observed in F11�Θ� as well as in the other scattering
element ratios. These resonance angles and the associated
value of F34�Θ�∕F11�Θ�were significantly different from those
for the volume-equivalent infinitely long cylinder.

Overall, the volume-equivalent cylinder featured normal-
ized Stokes scattering element matrix ratios very different
from those of linear chains of spheres. The equivalence
observed for the absorption and scattering cross sections
per unit length and for the asymmetric factor does not apply

 χ
s
 = 0.01

 χ
s
 = 0.1

 χ
s
 = 1.0

 χ
s
 = 10.0

 χ
c,eq,V

 =         

 χ
c,eq,V

 =         

 χ
c,eq,V

 =         

 χ
c,eq,V

 =         

Scattering angle, Θο

F
22

/F
11

 (
%

)

Chain of 
spheres

Cylinder

Scattering angle, Θο

F
33

/F
11

 (
%

)

Scattering angle, Θο

F
44

/F
11

 (
%

)

Scattering angle, Θο

-F
12

/F
11

 (
%

)

(a) (b) (c)

(d)

Scattering angle, Θο

F
34

/F
11

 (
%

)

(e)

0.1

1.0

10.0

3/2 ×
3/2

3/2

×
×

0.013/2 ×

90

60

30

0

-30

-60

-90

90

60

30

0

-30

-60

-90

90

60

30

0

-30

-60

-90

90

60

30

0

-30

-60

-90

0 50 100 150

0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150

60

30

0

-30

-60

Fig. 7. Scattering matrix element ratios (a) −F12�Θ�∕F11�Θ�, (b) F22�Θ�∕F11�Θ�, (c) F33�Θ�∕F11�Θ�, (d) F44�Θ�∕F11�Θ�, and (e) F34�Θ�∕F11�Θ� as a
function of scattering angle Θ for randomly oriented linear chains of spheres consisting of Ns;cr monodisperse spheres of diameter ds and of
infinitely long cylinders of volume-equivalent diameter as function of scattering angle for χs � 0.01, 0.1, 1.0, and 10 and m � 1.0165� i0.003.
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to the normalized Stokes scattering matrix element ratios
other than F44�Θ�∕F11�Θ�. These qualitative conclusions are
expected to be valid for other linear chains of optically soft
spheres.

D. Effects of Polydispersity
The radiation characteristics of linear chains of spheres can
be affected by the spheres’ polydispersity. To assess this ef-
fect in the context of filamentous cyanobacteria shown in
Fig. 1, we considered two different linear chains of 14 spheres
with average diameter d̄s of 3.323 and 3.753 μm and standard
deviation σ equal to 0.952 and 0.468 μm, respectively. The
smallest and largest spheres were 2.617 and 4.655 μm in
diameter for a size parameter ranging between 6 and 10.
The size distributions of the two chains were representative
of those measured for cyanobacterium Anaebena cylindrica.
Here also, the relative complex index of refraction was
m � 1.0165� i0.003 for all spheres.

Table 2 compares the absorption and scattering cross sec-
tions of the above-described randomly oriented linear chains
of polydisperse spheres and those of the linear chain of mono-
disperse spheres with the corresponding average diameter d̄s.
The results indicate that the cross sections hC0

abs;si and hC0
sca;si

for chain 1 fell within 10% of those of a chain with monodis-
perse spheres of average diameter d̄s. The differences in
hC0

abs;si and hC0
sca;si fell within 2% for chain 2. This can be

attributed to the narrower size distribution of chain 2 com-
pared with chain 1.

Overall, these results suggest that when estimating the ab-
sorption and scattering cross sections of filamentous cyano-
bacteria, the polydisperse vegetative cells and heterocysts can
be treated as monodisperse with diameter equal to the aver-
age cell diameter d̄s.

5. CONCLUSION
This study presented predictions of the radiation characteris-
tics and normalized Stokes scattering matrix elements of lin-
ear chains of spheres. The results established that scattering
and absorption cross sections per unit length of randomly ori-
ented linear chains of optically soft spheres and their asym-
metry factors can be approximated as those of randomly
oriented and infinitely long cylinders with volume-equivalent
diameter provided that the number of spheres is larger than
the critical sphere number Ns;cr � 136χ−0.7s . Finally, approxi-
mating long linear chains of spheres with infinitely long
cylinders does not extend to the normalized Stokes scattering
matrix element ratios. These results can be used for (i) predict-
ing the radiation characteristics of filamentous cyanobacteria
and (ii) retrieving the optical properties of filamentous
cyanobacteria from experimental measurements of absorp-
tion and scattering cross sections.
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